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Introduction
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Federated Learning: training models collaboratively over a large number of dis-
tributed edge devices without centralizing their local data.
Statistical Challenges: 1) Non-IID. 2) Unbalanced Local Data
System Challenges: 1) Larger Worker Number; 2) Heterogeneous Networks; 3)
Heterogeneous Computation.

Federated Multi-Task Deep Learning
Framework

a) Centralized Federated Learning
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b) Multi-Task Learning Block c) Decentralized Federated Learning

Computing Performance
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DPA-SGD Algorithm
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Convergence Analysis

Convergence of DPA-SGD: If the communication period τ satisfies:
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How to choose τ , ζ : for a small number of well-connected workers, larger τ is more
preferable; for a large number of workers, using a sparse mixing matrix and small τ gives
better convergence.
Effect of Extreme Large K: the iteration number T will be extreme large. To guaran-
tee the convergence, try to reduce the worker number through system-wised optimization:
1) Streaming training; 2) upload on-device data to the edge data center.

System Design
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On-Device Learning Framework

Tensorflow PyTorch Light

Federated Learning Server/Client System Architecture

Experiment

Round Number: 300; Worker Number: 8; Dataset: LEAF/FEMINST, 3550 users

Future Works


